
Apex	Support	Bulletin:		 Deploying	a	MAU	Caching	Server	
	
Revision	1.1	[October	21,	2016]	
Contact	pbowden@microsoft.com	
	
Summary	
Microsoft	AutoUpdate	(MAU)	is	a	utility	that	detects,	downloads	and	applies	updates	to	Microsoft	applications	installed	on	macOS.	Specifically,	
MAU	supports	Office	2016,	Office	2011,	Skype	for	Business	and	Lync	apps.	MAU	is	not	used	for	Microsoft	apps	that	are	downloaded	from	the	Mac	
AppStore.	
By	default,	MAU	will	perform	version	checks	against	Microsoft’s	Content	Delivery	Network	(CDN)	on	the	Internet	to	determine	whether	the	locally	
installed	app	has	an	update	available.	If	an	update	is	available,	MAU	will	determine	the	smallest	package	to	download	to	bring	the	locally	installed	
version	of	the	app	up-to-date.	
	
There	are	two	scenarios	where	enterprise	IT	admins	might	want	better	control	over	the	update	workflow:	
	

1. The	ability	for	MAU	to	use	a	local	network	source	for	retrieving	update	packages	instead	of	the	Microsoft	CDN	on	the	Internet.	This	scenario	
is	good	for	‘branch’	scenarios,	and	cases	where	Internet	bandwidth	is	limited.	For	this	scenario,	MAU	can	be	configured	to	use	an	
‘UpdateCache’.	
	

2. An	enterprise	might	want	to	have	strict	control	on	which	version	of	Office	applications	can	be	installed.	For	example,	Microsoft	releases	
production	quality	updates	on	the	second	or	third	Tuesday	of	each	month.	An	enterprise	might	want	to	temporarily	prevent	users	from	
updating	to	the	new	build	to	verify	compatibility	with	custom	applications.	For	this	scenario,	MAU	can	be	configured	to	use	a	custom	
‘ManifestServer’.	

	
Both	of	the	scenarios	above	can	be	deployed	independently,	or	together,	depending	on	the	requirements	of	the	business.	MAU	3.8	or	later	is	
required	to	support	both	of	these	scenarios.	
	
How	MAU	Works	
MAU	detects	application	updates	every	12	hours	by	checking	a	version	number	embedded	in	an	XML	file	(known	as	a	‘manifest’)	on	the	Internet	
and	comparing	that	against	the	version	of	the	locally	installed	app.	If	the	background	daemon	notices	that	the	XML	file	references	a	newer	version	
than	what	is	installed,	the	full	MAU	application	window	is	opened	and	users	are	prompted	to	update.	
	
The	exact	URL	of	the	XML	file	is	dictated	by	two	factors	1)	the	update	channel	that	the	user	is	subscribed	to	2)	the	identifier	of	the	application	that	
is	being	checked.	The	following	end-points	are	the	base	URLs	for	each	of	the	channels	that	MAU	supports:	
	

ChannelName	 Channel	Purpose	 Base	URL	
Production	 Highest-quality	monthly	

releases	
https://officecdn.microsoft.com/pr/C1297A47-86C4-4C1F-97FA-950631F94777/OfficeMac/	

External	 Insider	Slow	–	High	quality,	
early	access	builds	

https://officecdn.microsoft.com/pr/1ac37578-5a24-40fb-892e-b89d85b6dfaa/OfficeMac/	

InsiderFast	 Insider	Fast	–	Good	quality	
weekly	builds	

https://officecdn.microsoft.com/pr/4B2D7701-0A4F-49C8-B4CB-0C2D4043F51F/OfficeMac/	

	
Application	identifiers	consist	of	a	4-character	language	identifier,	4-character	app	name	and	2-character	version	number.	Typical	examples	are	as	
follows:	
	

Application	 Full	Application	Identifier	
Word	2016	for	Mac	 0409MSWD15	
Excel	2016	for	Mac	 0409XCEL15	
PowerPoint	2016	for	Mac	 0409PPT315	
Outlook	2016	for	Mac	 0409OPIM15	
OneNote	2016	for	Mac	 0409ONMC15	
Office	2011	for	Mac	(English)	 0409MSOf14	
Lync	2011	for	Mac	 0409UCCP14	
Skype	for	Business	Mac	 0409MSFB16	
Microsoft	AutoUpdate	 0409MSau03	

	
Important	notes:	

1. The	internal	version	of	Office	2016	for	Mac	applications	is	‘15’,	whereas	the	internal	version	of	2011	applications	is	‘14’	
2. Office	2016	applications	are	language-neutral	builds	and	use	a	fixed	language	identifier	of	0409,	regardless	of	the	language	preference	
3. Office	2011	updates	are	delivered	as	a	suite,	so	all	2011	apps	use	a	single	app	name	of	‘MSOf’	

	
If	you	know	the	channel	and	application,	you	can	determine	the	exact	URL	of	the	XML	file	that	MAU	will	use	to	check	for	updates.	For	example,	
PowerPoint	2016	on	the	Insider	Fast	channel	will	use	https://officecdn.microsoft.com/pr/4B2D7701-0A4F-49C8-B4CB-
0C2D4043F51F/OfficeMac/0409PPT315.xml	to	check	for	updates.	
	
In	addition	to	the	XML	file,	a	Microsoft-signed	security	catalog	(.CAT)	of	the	same	name	is	used	to	verify	that	both	the	XML	file	hasn’t	been	
tampered	with,	and	the	update	packages	have	not	been	altered	in	any	way.	The	combination	of	XML	and	CAT	are	commonly	known	as	‘collateral’.	
MAU	requires	both	the	XML	and	CAT	file	to	be	present	to	successfully	detect	updates.	
	
Scenario	1:	Deploying	an	‘UpdateCache’	Service	
There	are	three	components	that	make	up	the	UpdateCache	solution:	

1. The	MAUCacheAdmin	tool	which	copies	files	from	Microsoft’s	CDN	to	a	folder	of	your	choice.	
2. An	HTTP/HTTPS	web	service	that	exposes	your	folder	to	clients	on	your	network.	
3. A	configuration	change	to	the	MAU	client	on	each	users’	machine.	



	
The	MAUCacheAdmin	tool	
The	‘MAUCacheAdmin’	tool	can	be	used	to	copy	both	collateral	and	update	packages	from	the	Microsoft	CDN	to	a	folder	of	your	choice.	The	latest	
version	of	MAUCacheAdmin,	which	is	a	bash	script,	can	be	downloaded	from	https://github.com/pbowden-msft/MAUCacheAdmin		
	
By	default,	the	MAUCacheAdmin	tool	checks	the	CDN	and	downloads	updates	just	once.	If	you	wish	to	run	the	tool	in	a	loop	use	the	--CheckInterval	
command-line	parameter.	All	available	update	packages	are	downloaded	into	the	root	of	the	folder	that	you	specify	with	the	--CachePath	
command-line	parameter.	Only	production	quality	builds	are	downloaded	by	the	tool.	For	Office	2016	applications,	the	tool	will	download	both	
‘full’	updates,	and	‘delta’	updates	for	the	previous	three	releases.	A	typical	monthly	update	for	all	apps	will	consume	~8GB	of	disk	space.	
	

	

	
	
HTTP/HTTPS	web	service	
You	will	need	to	expose	the	CachePath	folder	as	part	of	an	HTTP	or	HTTPS	server.	MAU	has	no	dependency	on	the	operating	system	or	version	of	
the	web	host.	Any	HTTP	server,	including	Apache,	Internet	Information	Service	(IIS),	and	even	python’s	SimpleWebServer	is	capable	of	hosting	MAU	
content.	The	only	requirement	that	MAU	has	is	that	the	server	must	return	a	404	response	if	it	doesn’t	have	a	copy	of	the	requested	package.	
	
NOTE:	The	web	service	must	use	the	standard	ports	of	80	and	443.	MAU	does	not	support	custom	port	definitions.	



	
Configuring	the	MAU	client	to	use	a	local	server	
Once	your	web	server	is	deployed,	you	must	configure	each	users’	MAU	client	to	prefer	the	local	service	over	the	CDN.	You	can	use	Configuration	
Profiles	to	deploy	these	overrides,	or	simply	use	the	defaults	command-line	tool	to	set	local	preferences:	
	

defaults write com.microsoft.autoupdate2 UpdateCache -string 'https://server/folder/' 
	
IMPORTANT:	Ensure	that	a	trailing	slash	is	used	when	specifying	the	value	for	the	UpdateCache	preference.	This	is	mandatory.	
	
In	this	scenario,	MAU	will	still	use	the	collateral	on	the	Microsoft	CDN	to	detect	updates,	but	before	downloading	those	update	packages	over	the	
Internet	from	the	CDN,	it	will	first	check	the	UpdateCache	server.	If	the	UpdateCache	server	has	a	local	copy	of	the	update,	a	200	response	will	be	
sent	to	the	client	and	MAU	will	obtain	its	update	from	the	local	server.	If	the	server	returns	a	404	(not	found)	response,	MAU	will	fall-back	to	
downloading	the	package	from	the	CDN.	
	
Scenario	2:	Deploying	a	Custom	‘ManifestServer’	Service	
There	are	three	components	that	make	up	the	ManifestServer	solution:	

1. Obtaining	copies	of	MAU’s	collateral	
2. An	HTTP/HTTPS	web	service	that	exposes	the	collateral	to	clients	on	your	network.	
3. A	configuration	change	to	the	MAU	client	on	each	users’	machine.	

	
Obtaining	MAU	collateral	
You	can	use	the	MAUCacheAdmin	tool	to	obtain	collateral	from	the	CDN.	On	each	checking	cycle,	MAUCacheAdmin	will	download	the	latest	
collateral	and	place	it	in	the	‘collateral’	sub-folder	of	the	CachePath.	For	Office	2016	for	Mac	apps,	the	XML	and	CAT	files	are	stored	under	a	per-
version	folder.	Office	2011	collateral	is	stored	under	a	sub-folder	called	‘Legacy’.	
	

	
	
You	can	also	use	a	tool	such	as	curl	to	download	copies	of	collateral	from	Microsoft’s	servers	to	your	custom	server.	For	example:	
	

curl -# --output --url "https://officecdn.microsoft.com/pr/4B2D7701-0A4F-49C8-B4CB-
0C2D4043F51F/OfficeMac/0409PPT315.{xml,cat}" 

		
Finally,	you	can	find	archives	of	Office	2016	application	collateral	at	http://macadmins.software.	Simply	download	the	DMG	relative	to	the	
‘maximum’	version	you	want	MAU	to	see.		
	
HTTP/HTTPS	web	service	
You	will	need	to	expose	your	collateral	folder	as	part	of	an	HTTP	or	HTTPS	server.	MAU	has	no	dependency	on	the	operating	system	or	version	of	
the	web	host.	Any	HTTP	server,	including	Apache,	Internet	Information	Service	(IIS),	and	even	python’s	SimpleWebServer	is	capable	of	hosting	MAU	
content.	It	is	recommended	that	you	create	a	folder	called	‘Production’	and	drag	the	relevant	application	collateral	into	that	folder.	This	flat	folder	
of	application	collateral	is	what	the	MAU	client	will	use	to	determine	in	an	update	is	available.	Think	of	the	versioned	folders	as	a	long-term	archive.	
	
You	must	deploy	collateral	for	all	applications	to	your	custom	manifest	server,	not	just	the	apps	that	you	wish	to	control.	For	example,	if	you	don’t	
deploy	0409UCCP14	collateral,	MAU	will	not	be	able	to	check	for	Lync	updates.	
	
If	your	custom	manifest	server	is	on	your	corporate	network,	users	who	take	their	machines	home	may	not	have	direct	access	to	the	web	server	
and	MAU	will	not	be	able	to	check	for	updates.	
	
If	you	are	deploying	both	an	UpdateCache	and	custom	ManifestServer,	you	can	use	either	the	same	web	server,	or	different	servers	–	it’s	your	
choice.	
	
NOTE:	The	web	service	must	use	the	standard	ports	of	80	and	443.	MAU	does	not	support	custom	port	definitions.	
	
	



	
	
Configuring	the	MAU	client	to	use	custom	manifests	
In	addition	to	Microsoft-defined	update	channels,	MAU	supports	a	custom	channel	where	you	can	specify	your	own	manifest	server.	You	can	use	
Configuration	Profiles	to	deploy	these	overrides,	or	simply	use	the	defaults	command-line	tool	to	set	local	preferences:	
	

defaults write com.microsoft.autoupdate2 ChannelName -string 'Custom' 
defaults write com.microsoft.autoupdate2 ManifestServer -string 'https://server/folder/' 

	
IMPORTANT:	Ensure	that	a	trailing	slash	is	used	when	specifying	the	value	for	the	ManifestServer	preference.	This	is	mandatory.	
	
If	MAU	has	been	configured	to	use	a	custom	manifest	server,	it	will	use	that	exact	path	as	the	single	authority	of	updates.	If	your	custom	manifest	
server	is	down	or	non-functional,	MAU	will	report	that	the	update	server	could	not	be	reached.	It	will	not	fail-through	to	Microsoft’s	servers.	
	
You	cannot	use	MAU	to	deploy	custom	applications.	Attempting	to	alter	the	manifest	(XML)	file	will	cause	a	file	signature	change,	which	MAU	will	
reject.	

Document	History	
	

Date/Version	 Changes	
October	6,	2016	–	1.0	 Initial	version,	based	on	contents	from	‘Implementing	a	Custom	Manifest	Server	for	MAU’	
October	21,	2016	–	1.1	 Revised	the	MAUCacheAdmin	section	as	the	tool	now	just	runs	once	by	default	

	


